Our green synthesized gold nanoparticles

Download Catalog
Send an Inquiry

Why choose TORSKAL’s green synthesized gold nanoparticles?

Since colloidal suspensions are thermodynamically unstable & tend to flocculate, the control of the aggregation of gold nanoparticles is important to modulate their applications. For biomedical applications, poor stability can lead to a total/partial loss of their nanoscale properties, alters their cellular uptake, & modifies their bioavailability & toxicity.

Colloidal stability is a result of attractive Van der Waals and repulsive electrostatic forces between particles preventing them from aggregation. The sum of these opposing forces results in a total interaction potential depending on the distance between two particles whereby the maximum is referred to as the aggregation barrier. These interactions can be influenced by environmental parameters such as pH, temperature, ionic strength, and the presence of ligands.

This experiment illustrates the high sensitivity of the coloration to compare gold nanoparticles’ stability. Individual gold nanoparticles appear red/red-purple, however when the particles aggregate together, the plasmon resonances shift, and the color changes to blue. Upon addition of PBS to Turkevich nanoparticles, the initial red color of the gold nanoparticles solution turns blue. Salts in PBS screen the repulsive electrostatic forces caused by the citrate layer. Indeed, the positive charges of the electrolyte associate with the negative charges on the surfaces of the nanoparticles. TORSKAL’s green gold nanoparticles showed remarkable stability in the same condition, which makes them monodisperse.

Turkevich vs TORSKAL's Gold Nanoparticles

Turkevich vs TORSKAL’s green gold nanoparticles

TORSKAL’s green gold nanoparticles, lyophilised plant extract, plant powder and dried plant leaves

#Tags: Gold colloid, Colloidal gold, Colloidal suspension, Nano gold particles, Nanogold particles, Nano gold liquid, Gold particles, Colloidal gold water, Colloidal gold solution, AuNPs, Au nanoparticles.